洞悉医用3D打印的发展现状、研发、挑战、标准与
【作者】网站采编
【关键词】
【摘要】医用增材制造的原料与其他多个领域使用的原料具有广泛通用性,这是构成三维(3D)打印领域的重要基础。在医学领域,3D打印最初用于制造生物假体,现已扩展至细胞、组织和器官打
医用增材制造的原料与其他多个领域使用的原料具有广泛通用性,这是构成三维(3D)打印领域的重要基础。在医学领域,3D打印最初用于制造生物假体,现已扩展至细胞、组织和器官打印,并用于制造医用机器人。目前,各种新颖的材料正在涌现,并将提供更多临床应用方案以供医生选择——特别是用于治疗棘手的疾病。
中国工程院邱贵兴院士、丁文江院士等科研人员在中国工程院院刊《Engineering》撰文指出,医用增材制造促使我们开发更好的材料、设计和制造新技术,建立经过验证的临床指标和应用方案,以期通过提高医疗效能与安全性使患者受益。文章围绕医用增材制造原料的研发与挑战,医用增材制造前沿技术的研发与应用,医用增材制造产品的认证标准、法规及评价体系,医用增材制造产品的临床应用等方面进行了详细的分析与展望。
面向未来的材料与增材制造应用开发
一、医用增材制造原料的研发和挑战
医用增材制造的原料与其他多个领域使用的原料具有广泛通用性,这是构成三维(3D)打印领域的重要基础。这些领域的增材制造在材料类型、粉体特性、成型性和黏弹性等方面面临着相同的问题和挑战。例如,航空领域采用了多种金属材料,而生物医学领域会使用金属、聚合物和无机材料。在生物医学领域,应用最广泛的材料是生物相容性材料。3D打印还会用到各种均质和非均质复合材料,这为增材制造带来了更多的挑战;使用异质复合材料进行3D打印尤其富有挑战性。
3D打印已成为支撑粤港澳大湾区产业发展的重要分支之一。在医学领域,3D打印最初用于制造生物假体;但现已扩展至细胞、组织和器官打印,并用于制造医用机器人。许多具有特殊部件或特性的器械需通过能够匹配3D甚至四维(4D)打印技术的专用材料制成(在4D打印中,产品会随着时间的推移而发生变化,从而形成另一种维度)。在增材制造产品的梯度设计中,首先需要构建和打印产品。在产品研发之初,就能测试生物降解性和生物相容性等基本特性。3D打印的由形状记忆合金构成的血管支架等智能器械也进入了研发(R&D)阶段。由此可见,各种新颖的材料正在涌现,并将提供更多临床应用方案以供医生选择——特别是用于治疗棘手的疾病。
《自然》于2017年首次发表的超纳米双相镁合金是一种具有极强颗粒崩解性且能生物降解的金属;它的应用不仅推进了3D打印的发展,而且开启了4D打印的机遇之门。虽然人体是一套复杂的机械系统,但3D和4D打印有可能超越人体力学的极限,通过技术创新达到强化人体的目的。传统的3D打印技术源于外国公司,并包括3D打印原料的研发,而这些原料通常会被这些公司所垄断。这使得研发生物医用的具有自主知识产权的粉体或油墨原料以满足国内应用需求具有重要意义。因此,人们必须注重原料的创新和开发、质量控制并制定相关标准和法规——特别是针对临床应用研发的三类植入物。
临床环境亟需耐药抗生素,并且其重要性与日俱增。近年来,大量的研究将材料与抗菌药物相结合,并已发表多篇相关的学术论文,如一维材料(金属、银离子、金离子和铜离子等)和二维(2D)材料(硫化钼和石墨烯等)的结合。新材料与抗生素的结合以及与3D打印的进一步融合不仅是材料添加物的下一步研究方向,也需要进一步的投资以实现临床应用。
3D打印和原材料研发之间从一开始就需要建立协同关系。从材料制造的角度而言,3D打印的成型、制备和固化过程有别于传统加工过程。例如,钛合金在临床应用中已经十分成熟,但不能直接用于3D打印。这些材料必须首先被雾化成粉体,并优化其成分组成,以适用于3D打印。因此,关键的研究方向应包括研发适用于3D打印的原料以及传统医用金属材料的定向设计,并且研究中需要开展多学科协作。
近年来,镁和镁合金在骨缺损修复方面展示出巨大的应用潜力,并且特别适用于组织再生潜力低的情况。动物实验和临床试验均表明镁合金具有良好的成骨作用和疗效。但由于镁和镁合金极易氧化,所以如何减少纯镁粉末或镁合金粉末的氧化是3D打印制造过程中需解决的关键问题。如发生氧化,则粉体易在3D打印固化过程中形成冷间壁,这将显著降低材料的疲劳性能,导致器械过早失效。在纯镁或镁合金粉末的制备过程中,氧含量的控制至关重要。因此,应根据需使用的相关材料的研发和选择设计3D打印设备。如果能通过协同方式解决上述问题,则有可能解决当前的3D打印难题,并迎来3D打印技术在医疗器械领域应用的巨大发展,特别是在拥有庞大医疗需求的国家(如我国)。
文章来源:《医用生物力学》 网址: http://www.yyswlx.cn/zonghexinwen/2021/0502/423.html